
Lecture 1 - Introduction
Aristotelian Logic

Syllogism: logical argument where a conclusion is inferred from two or more premises
Ex. "All humans are mortal" and "Socrates is human" → Socrates is mortal

This is a good argument because it is truth-preserving
Correctness depends on the form of the argument, not its specifics

The above argument has the form "All x are y" and "B is an x" → "B is a y"
This type of proof is called a hypothetical syllogism

Applications of Logic to CS
Electric computers (electronic digital circuits) are made up of logic gates
Logic can be used to minimize the number of components in a circuit
Artificial Intelligence (knowledge base + inference engine)
Automated theorem proving / automated proof assistants
Databases
Programming (program specification, formal verification)

The programming logic PROLOG

Introduction to Propositional Logic
Logic: analysis and appraisal of arguments

Logic studies forms of reasoning
Argument: set of statements in the form of premises and a conclusion
A valid argument (or sound argument) is one where the conclusion is true if the premises
are true

An invalid argument is the opposite
Arguments can be compound: "The computer program has a bug or an input error" and
"There is no input error" → "The computer program has a bug"
Here, in the first argument, two statements are connected with OR

Types of logical arguments
Hypothetical syllogism

"If P  then Q" and "If Q then R" → "If P  then R"



Disjunctive Syllogism
"P  or Q" and "not Q" → "P "

Modus Ponens (method of placement)
"If P  then Q" and "P " → "Q"

Modus Tollens (contrapositive)
"If P  then Q" and "not Q" → "not P "

Propositions
Proposition: statement that is either true or false
In the above section, P , Q and R are propositional variables

They must have the value of a propositional constant: TRUE  or FALSE

Propositional variables are atomic propositions
Compound propositions are created by combining atomic propositions using logical
connectives ( AND , OR , NOT , IF-THEN , etc.)

Logical Connectives

Negation (NOT): ¬P

Conjunction (AND): P ∧ Q

Only true if both P and Q are true

Disjunction (OR): P ∨ Q

Implication (IF-THEN): P ⟹ Q



Lecture 2 - Propositional Language and Lp
Implication

p ⟹ q is false when we have "true implies false" and true otherwise
p: antecedent
q: consequent

English translation (main): If p then q
p is sufficient for q
p only if q
q if p

When p is false, the implication is always vacuously true

Equivalence
p ⟺ q is true when p and q are the same

I.e. p is equivalent to q
p if and only if q

Imprecision and Ambiguity
Ambiguous sentence: sentence that has several interpretations

Can be eliminated by querying the author of the sentence

Imprecise sentence: lacks rigor
Can be eliminated by adding quantitative data

Propositional Language
Connectives can combine propositions, whether they are atomic or not
We will use full parenthesized expressions to avoid ambiguity about logical statements

We cannot assume an order of operations
L

p is the language of propositional logic
Will contain symbols: p, q, ∧, etc.
Expressions: finite strings of allowed symbols

The empty expression has length 0, denoted ϵ
Expressions are equal if they have the same length and the same symbols in the
same order



Two expressions can be concatenated
Segment: "substring" of an expression

Proper segment: segment that is not the entire expression
Types of segments: initial segment (prefix), terminal segment (suffix)

These are "proper" if the segment in question is not ϵ

The set of formulae of Lp

Atom: set of expressions in Lp that consist of a single symbol
The set of formulas of Lp Form(Lp) is defined recursively as

BASE CASE: An atom of Lp (Atom(Lp))
RECURSIVE CASE: if A and B are formulae in Lp, ¬A, A ∧ B, etc. are all formulae

This is the set of formation rules
Applying parentheses at every recursive step ensures that the formula will be fully
parenthesized

Parse tree
CS 146 flashbacks (for some of you)
Much like an AST, it is a tree that shows how each subexpression is formed

Claims about Lp

Every formula in Lp has the same number of left and right parentheses
Every proper initial segment has more left parentheses than right parentheses

Inverse applies to terminal segments and right parentheses
Neither of these segments can itself be a formula because of this

Unique readability theorem: Every formula of Lp is of exactly one of six forms: an atom,
¬A, A ∧ B, A ∨ B, A ⟹ B, or A ⟺ B

Review of Mathematical Induction
We define the natural numbers as 0, 1, 2, 3 …

We define P(n) as n ∈ N has property P
Principle of mathematical induction

Prove P(0)

Prove that P(n) ⟹ P(n + 1) for all n ∈ N

Strong induction: at each inductive step, we assume not only the base case, but all
previous inductive cases as well



This is essentially the same thing as regular induction, but we define the property to
apply to all k ∈ N ≤ n

Recursively defined sets
Definition consists of three parts

Base: A statement that a certain object is in the set
Recursion: Rules that allow existing objects in the set to be combined into new objects
that are also in the set
Restriction: A statement that posits that only objects formed by rules 1 and 2 are in the
set

L
p is defined recursively, so we can use structural induction to prove things about

Form(Lp)

Structural induction permits us to induct on any mathematical object
The natural number version of structural induction is strong induction
Usually, any structural induction argument can be turned into a strong induction
argument



Lecture 3 - Propositional Logic Semantics
Inductive proof for Form(Lp)

Inductive hypothesis: P(k) for some k
To show that P(k + 1) is true, let formula A have k + 1 connectives

Subcase ¬ (unary logical operator)

A = (¬B) where ¬ is the k + 1st connective. Here, B is a formula with the properties (a),
(b), and (c) (hypothesis). These properties are the B starts with a (, has an equal number of
opposing parens, and is a well-formed formula

A holds since we still defined it to start with an open paren
B holds since we add one left and one right paren
C applies due to the recursive definition of a formula (since B is well-formed)

Subcases ∧, ∨, ⟹ , ⟺  (binary logical operators)

We will only prove C
First we show that A can only be written one way, i.e.
A = (B ∗ C) = (B′ ∗′ C ′) ⟹ B′ = B ∧ C ′ = C

If B′ has the same length as B, it must be the same since it starts at the same spot
So, assume for sake of contradiction that B′ is shorter
Since B is well=formed, B′ must have more left parens than right parens
This is a contradiction that B′ is well-formed, so it is wrong
A similar argument can be used to show that B is a proper prefix of B′

We must also show that B ∗ C ≠ ¬D, which it cannot because we know B starts with a left
paren

Consequences of unique readability
Ensures unambiguous formulae
A formula must be one of the six types defined (atom, negation of formula, conjunction of
two formulae, etc.)

Precedence rules (for humans)
In order from most precedent to least precedent:  ¬,  ∧,  ∨,   ⟹ ,   ⟺



Module: Propositional Language: semantics

Syntax vs. Semantics
Syntax: rules for declaring formulas

Logical equivalent to syntax error: string that does not belong in Form(Lp)

Semantics are considered with the meaning of a formula
Atoms represent simple propositions
Connectives have their intended meanings
The "meaning" of a formula comes from its truth table

Truth valuations
Truth table: list of the values of a formula under any possible set of values of its
propositions

If there are n propositions, there are 2n rows in the truth table
Truth valuation function: t : Atom(Lp) → {0, 1}

The valuation of a formula is defined using structural recursion
Form: P -> value is P
Form ¬P  -> value is 0 if P is 1, 1 if P is 0
Form P ∧ Q -> value is 1 if P = Q = 1, 0 otherwise
etc.

A formula can have different truth valuations if the variables (propositions) have different
values

A truth valuation t satisfies a formula A ⟺  At = 1

Σt = {1 if B ∈ Σ, Bt = 1, 0 otherwise }

Set of formulas that are true under valuation t

A set of formulas Σ ⊆ Form(Lp is satisfiable ⟺  there exists a truth valuation t such that
Σt = 1. If no such t exists, the set of formulas Σ is unsatisfiable

Strategy for assignment 1
Write down a truth table for all the formulas
Σ is satisfiable ⟺  there exists a row with At = Bt = ⋯ = Dt on that row
Otherwise, it is not satisfiable

Tautologies and contradictions
Tautology: a formula that is always true (under any truth valuation)



Contradiction: a formula that is always false (under any truth valuation)
Contingent: a formula that is neither a tautology or contradiction

Tautologies

Law of the excluded middle: p ∨ ¬p

This is an important tautology
If A is a tautology that contains the prop. symbol p, p can be replaced with an arbitrary
formula and A′ will still be a tautology

Law of contradiction

¬(p ∧ ¬p) is a tautology; p ∧ ¬p is a contradiction

Three laws of thought (Plato)
1. Law of identity: p = p

2. Law of contradiction: ¬(p ∧ ¬p)

3. Law of the excluded middle: p ∨ ¬p

Tautological Consequence
Suppose Σ ⊆ Form(Lp) and A ∈ Form(Lp). Then, A is a tautological consequence of Σ
if and only if we have that Σt = 1 ⟹ At = 1 for every truth valuation t

I.e. If Σ is satisfiable by t, then A is 1 (true)
This is written Σ ⊨ A

This is not a formula; it is a statement in the metalanguage about Σ and A
Otherwise, we have Σ ⊭ A

We can say that the formulae in Σ tautologically (or just logically) imply the formula A

Special Case: ∅

When Σ is the empty set, we get ∅ ⊨ A

In this case, since there are no formulas (and because ∅t = 1 is always vacuously true),
∅ ⊨ A ⟹ A is a tautology

Fitting this in with previous theorems

Let Σ = A1, A2, … , An ⊆ Form(Lp) be a set of formulas (premises) and C ∈ Form(Lp) be
a formula (conclusion). The following are equivalent

The argument with premises A1 … An and conclusion C is valid



A1 ∧ ⋯ ∧ An ⟹ C is a tautology
A1 ∧ ⋯ ∧ An ⟹ ¬C is a contradiction
The formula A1 ∧ ⋯ ∧ An ∧ ¬C and the set {A1 … An, ¬C} are not satisfiable
C is a tautological consequence of Σ

Observation on valid arguments
A conclusion C is only true if its arguments A1 … An are all true and the conclusion C is
valid

Tautological Equivalence
A ≡ B if and only if A ⊨ B ∧ B ⊨ A

Tautologically equivalent formulae are assigned the same truth values by any valuation
This doesn't guarantee that the formulae are all the same, just that the act the same way
This is subtly different than ⟺  (same for ⟹ )

(A ≡ B) ⟺ (A ⟺ B) is a tautology

Same for a one direction implication

Proving tautological equivalence
Truth Tables

To prove tautological equivalence, we may show that any truth valuation that satisfies Σ
satisfies A using a truth table
This can be used to prove that arguments are sound: equivalent to showing {A1 … An} ⊨ C

The invalidity of an argument can be proven by finding at least one row on a truth table
where the premises are true but the conclusion false

Proof by contradiction

Unfortunately, truth tables often get too large to use effectively, so we may wish to use
another method
Proof by contradiction: assume the opposite of what you are trying to prove and show that
it leads to a contradiction (i.e. p ∨ ¬p)

Proof by counterexample

Finding a single example that contradicts what is trying to be proven means that it must be
false



Important Tautological Equivalences
De Morgan's Laws

¬(p ∧ q) ≡ (¬p ∨ ¬q)

¬(p ∨ q) ≡ (¬p ∧ ¬q)

Contrapositive

p ⟹ q ≡ ¬q ⟹ ¬p

Note that the converse q ⟹ p is not necessarily true; it is only the case if p ⟺ q

Biconditional

AKA "If and only if", "iff"
p ⟺ q ≡ (p ⟹ q) ∧ (q ⟹ p)

This essentially checks whether p and q have the same value

Equivalences of connectives

If A ≡ A′ and B ≡ B′

¬A ≡ ¬A′

A ∧ B ≡ A′ ∧ B′

etc.

Replaceability and Duality
Replaceability of tautologically equivalent formulas: Let A be a formula that contains
subformula B. Let B ≡ C and let A′ be the formula obtained by replacing B with C in A.
Then A ≡ A′

This can be proven by structural induction
Duality: Let A be a formula in Form(Lp) composed of atoms and the connectives ¬, ∧,
and ∨. Define Δ(A) as the formula found by replacing in A each atom with its negation, ∧
with ∨, and ∨ with ∧. Then A ≡ ¬Δ(A)

This can also be proven by structural induction

Fuzzy Logic
Instead of have truth values be 0 or 1, they can be anything in the range [0, 1]

We still have 1 meaning true and 0 meaning false

We can redefine connectives as such



p ∧ q becomes min{p, q}

p ∨ q becomes max{p, q}

¬p becomes 1 − p

Note that these definitions still hold with our binary logic system (interesting!)

In this system, the laws of the excluded middle and contradiction do not hold



Lecture 4 - Propositional Calculus
Propositional Calculus

When we perform algebra normally, we manipulate equations with a set of rules and
identities

Most of us experienced enough not to think about each step

We can do the same thing with logical formulas as well
Instead of using algebraic identities, we use tautological equivalences
Ex. (p ∧ q) ∧ ¬q ≡ p ∧ (q ∧ ¬q) ≡ p ∧ 0 ≡ 0

Note that this expression is not in Form(Lp) since 0 and 1 are not part of this set

Removing ⟹  and ⟺

These connectives are useful for expressing ideas but painful to manipulate
Thus, we can use their definitions in terms of the other three connectives

A ⟹ B ≡ ¬A ∨ B

A ⟺ B ≡ (A ∧ B) ∨ (¬A ∧ ¬B)

Essential Laws of propositional calculus
Name Law

Excluded Middle A ∨ ¬A ≡ 1

Contradiction A ∧ ¬A ≡ 0

Identity A ∨ 0 ≡ A, A ∧ 1 ≡ A

Domination A ∨ 1 ≡ 1, A ∧ 0 ≡ 0

Idempotent A ∨ A ≡ A, A ∧ A ≡ A

Double Negation ¬(¬A) ≡ A

Commutativity A ∨ B ≡ B ∨ A, A ∧ B ≡ B ∧ A

Associativity
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C)

(A ∧ B) ∧ C ≡ A ∧ (B ∧ C)

Distributivity
A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)

A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)



Name Law

De Morgan's
¬(A ∧ B) ≡ ¬A ∨ ¬B

¬(A ∨ B) ≡ ¬A ∧ ¬B

These laws are used to simplify formulas
Should be used when possible

These can all be proven using a truth table
Each law has a dual pair where ∧ and ∨ are switched and each atom is replaced with its
negation

Fittingly, the double negation law is its own dual

Equivalents in regular algebra

The laws of commutativity, associativity, and distributivity are also present in regular
algebra
In fact, many things seem to act the same way with respect to these laws

∨ behaves the same way as +
∧ behaves the same way as ×
¬ behaves the same way as ̄

Further Laws

Name Law

Absorption
A ∨ (A ∧ B) ≡ A

A ∧ (A ∨ B) ≡ A

Unamed
(A ∧ B) ∨ (¬A ∧ B) ≡ B

(A ∨ B) ∧ (¬A ∨ B) ≡ B

Shortcuts for simplification
Literals

Formulae in the form p or ¬p are literals
p and ¬p are complimentary literals

Rules for literals

If a conjunction contains complimentary literals or a 0, it always yields 0
All instances of 1 and duplicate literals can be ignored

(dual) If a disjunction contains complimentary literals or a 1, it always yields 1



All instances of 0 and duplicate literals can be ignored

Normal Forms
Formulas can be manipulated into different normal forms that make them easier to
compare and/or use for other things
There are two types of normal forms:

Disjunctive normal form: A disjunction of conjunctive clauses as its disjuncts
Conjunctive clause: formula containing only conjunctions
Form: (p1 ∧ p2 ∧ …) ∨ (q1 ∧ q2 ∧ …) ∧ …

Conjunctive normal form: A conjunction of disjunctive clauses
Form: (p1 ∨ p2 ∨ …) ∧ (q1 ∨ q2 ∨ …) ∧ …

Atomic formulas are in both conjunctive and disjunctive normal form
Formulas that consist only of conjunctions or consist only of disjunctions are also in
both normal forms

Obtaining normal forms

Strategy: use tautological equivalences to manipulate the formula into one of the forms
Algorithm for conjunctive normal form (CNF):

1. Eliminate ⟹  and ⟺  using their definitions
2. Use double negations and de morgan's laws to remove negations of expressions (the

only negations should occur on individual atoms)
3. Use the following recursive algorithm on the obtained formula A

1. If A is a literal return A
2. If A is B ∧ C then return CNF(B) ∧ CNF(C)

3. If A is B ∨ C

1. Determine CNF(B) and CNF(C)

2. Suppose that each of this are conjunctive clauses
3. Return the result of distributing the disjunction (i.e. ∧i=1…n,j=1…m(Bi ∨ Cj)).

This is similar to expanding (n1 + ⋯ + xn) × (y1 + ⋯ + ym)

The dual can be used to find DNF

We can also find each form by reading off of a truth table
Disjunctive: disjunction of all the rows in the table where the formula is true
Conjunctive: take the dual of the disjunction of all the rows where the formula is false

Existence of normal forms

Theorem: Any formula A ∈ Form(Lp) is tautologically equivalent to some formula in DNF



Proof
If A is a contradiction, it is tautologically equivalent to p ∧ ¬p, which is in DNF
If A is not a contradiction

There are some valuations under which A is true
Each of these valuations becomes a conjunctive clause (hand-waving here but
you get the idea)
By the definition of ∧, the disjunction of these clauses is equivalent to A

We can also say that if A is a tautology, then it is equivalent to p ∨ ¬p (this case if
covered by the previous one)

Theorem: Any formula in A ∈ Form(Lp) is equivalent to some formula in CNF
Taking the dual of the CNF gives the DNF for the negation of the expression

We can find it by taking the dual of the DNF of ¬A (i.e. disjunction of all the rows
that are false)

Since we know DNF exists, CNF must also exist



Lecture 5 - Adequate Connective Circuits
Connectives

Since A ⟹ B ≡ ¬A ∧ B, the connective ⟹  is definable in terms of ¬ and ∧
∨ is definable in terms of ¬ and ⟹  since A ∨ B ≡ ¬A ⟹ B, etc

There are four possible unary connectives and sixteen possible binary connectives. We
can also define n-ary connectives (ex: if-then-else block)

These are essentially functions, and are notate f(A1, … An)

Four unary connectives: always true (⊤), always false (⊥), no change ( ), negation (¬)
There will be 22n n-ary connectives since with n symbols, the truth table has 2n rows
and 2n possible outputs per row

Connectives are defined by their truth table

Some more common connectives

There exist some more common connectives that we haven't seen yet
NAND: ¬(p ∧ q) (short for not and)
NOR: ¬(p ∨ q) (short for not or)
XOR: ¬(p ⟺ q) (short for exclusive or)

Adequate sets of connectives
A set of connectives is adequate if it can express any truth table
The set of 5 standard connectives {¬, ∧, ∨, ⟹ , ⟺ } is adequate

Note that since ⟹  and ⟺  can be defined in terms of the remaining three, the set
{¬, ∧, ∨} is also adequate

This also follows from the theorems proving the existence of CNF and DNF for
any formula

Proving adequacy

We can prove adequacy by showing that each connective in the set {¬, ∧, ∨} can be
constructed using connectives in our set S

I.e. we are creating a tautological equivalence between some formula AS in S and
some formula AS0 where S0 = {¬, ∧, ∨} and citing the replaceability theorem

Ex. Since ¬(¬A ∧ ¬B) ≡ A ∨ B, the set {¬, ∧} is adequate
By duality, the set {¬, ∨} is also adequate



Some more common connectives

There exist some more common connectives that we haven't seen yet

Name Notation Logical definition Circuit name

Peirce Arrow p ↓ q ¬(p ∨ q) NOR

Sheffer Stroke p ∣ q ¬(p ∧ q) NAND

Exclusive Or p ⊕ q ¬(p ⟺ q) XOR

Note that the Pierce Arrow and Sheffer Stroke are adequate by themselves
Proof of Pierce Arrow adequacy

¬p ≡ p ∣ p

p ∧ q ≡ (p ∣ q) ∣ (p ∣ q)

p ∨ q ≡ (p ∣ p) ∣ (q ∣ q)

Thus, {∣} is adequate

Proving inadequacy

We must prove that the set {¬, ∧, ∨} cannot be defined using the set of connective we wish
to prove inadequate

A ternary connective
Define τ as the ternary connective with the following truth table

p q r τ(p, q, r)

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 0

Here, τ(p, q, r)t is the same as qt if pt = 1, and equals rt if pt = 0

This is the if-then-else statement



There are 223
= 256 possible ternary connectives

Boolean Algebra
A Boolean algebra is a set B together with two binary operations + and ×, and the unary
operation ̄ . B is the set {0, 1} and is closed under the application of the three operations.
The following laws must hold

Identity laws: x + 0 = x and x × 1 = x

Complement laws: x + x̄ = 1 and x × x̄ = 0

Associativity laws: (x + y) + z = x + (y + z) and (x × y) × z = x × (y × z)

Commutativity laws: x + y = y + x, x × y = y × x

Distributivity laws: x + (y × z) = (x + y) × (x + z) and x × (y + z) = (x × y) + (x × z)

Any "rule" or "law" in one boolean algebra has an equivalent in any other one
Boolean algebra is used to model computer circuitry

Inputs and outputs are in the set {0, 1}

Individual circuits can implement a boolean function f : {0, 1}n → {0, 1}

The building blocks of circuits are logic gates, which act as the boolean operators

Examples of boolean algebras

The set of formulas in Form(Lp) that use only the connectives {¬, ∧, ∨} is a Boolean
algebra (we are treating = as ≡) is a Boolean algebra
The set of subsets of the universal set U  with the union operator ∪, the intersection
operator ∩, the set complement operator c, the empty set ∅ and the universal set U  is a
Boolean algebra (woah)

Transistors
These are the physical implementation of logic gates
Transistors are switches that may or may not let electricity flow
Each transistor has an two inputs lines and an output line

The output line can either be in an "on" or "off" state, which is equivalent to the binary
0 and 1
The first input is the control line, and is used to control the switch

If a significantly high voltage is applied to the control line, the switch closes and enters the
ON state

Here, voltage coming through the input goes directly out the output (which can be
measured)

Although transistors are convenient due to their tiny size, any bistable device can be used
to form a binary computer. Such a device must



Have two energy states (0 or 1) separated by a large barrier (so they are not switched
by accident)
Have a way to sense its own state (i.e. whether it is a 0 or 1)
Be able to switch from a 0 to a 1 if enough energy is applied

Based on these rules, the light switch can be used to create a binary computer (albeit a
really slow one)
It is likely that current transistors will be replaced by better technology that performs the
same function

Basic Logic Gates
Gate Expression Diagram Transistor diagram

NOT ¬p

NOR ¬(p ∨ q)



Gate Expression Diagram Transistor diagram

OR p ∨ q

NAND ¬(p ∧ q)

AND p ∧ q

The NOR gate (and all the gates) uses a resistor



It implements negation by using the switch to open the circuit to ground (logical 0)

The NOR gate is created by wiring two transistors in parallel such that current travelling
through either one travels to the output
The OR gate is created by negating the NOR gate with a NOT gate
The NAND gate is created by wiring two transistors in parallel so that the current must
travel through both in order to set an output as 1
The AND gate is created by negating the NAND gate

Non-standard gate example: Toffoli gate

x1 x2 x3 y1 y2 y3

1 1 1 1 1 0

1 1 0 1 1 1

1 0 1 1 0 1

1 0 0 1 0 0

0 1 1 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 0 0 0

Has a 3-bit input and 3-bit output
If the first two bits are 1, the second bit is inverted. Otherwise, the output is the same as
the input
It is universal and reversible

Universal: can be used to implement any other logic gate
Reversible: one-to-one correspondence between inputs and outputs (if we know the
output, we can deduce the input)

Can be implemented using five 2-bit quantum gates

Circuit notation and conventions
x + y denotes x ∨ y

x × y and xy denote x ∧ y

x̄ denotes ¬x

= denotes ≡
AND and OR gates may have multiple inputs since they are n-ary inputs



Combinatorial circuits
Any memoryless circuit where the output(s) is a function of the inputs only
This can be implemented using NOT, OR, and AND gates
These are in contrast to sequential logic circuits, which have memory components
Combinatorial circuits can be created from a boolean algebra expression by following the
tree structure of the expression
Sometimes, multiple logic gates may use the same inputs (i.e. a variable appears multiple
times in an expression). There are two options to depict this

Each input is drawn multiple times
Each input is drawn once and branches into multiple logic gates

Propositional calculus can be used to simply expressions, which create simpler and less
expensive circuits

Adders
A useful task that can be completed with circuits is adding numbers
First, we create a half-adder that adds two bits

It has two output bits: a sum bit and a carry bit
The carry bit is essentially the "2-place" of the sum bit

Truth table

x y sum carry

1 1 0 1

1 0 1 0

0 1 1 0

0 0 0 0

We see that sum = xȳ + x̄y ≡ (x + y)x̄y and carry = xy

We can draw a circuit from this equation



We use half-adders to create a full adder with the following truth table:

We get s = xyci + xȳci + x̄ybarci + x̄ȳci and ci+1 = xyci + xyc̄i + xȳci + x̄yci

We get the following circuit



We can keep chaining adders together in similar ways to get a three-bit adder, etc

Minimizing Circuits
The less operators that are present in an logical expression, the less gates -> transistors
need to be used to implement the circuit
Thus, we can use the laws of propositional logic to minimize circuits and make them more
efficient
We can also use these techniques to simplify code, specifically code that uses nested if
statements

We can determine the conditions for the code in each block to be run
Stuff like this is important for optimizing compilers



Lecture 6 - Formal Deducibility
Formal Deducibility

So far, we have used semantic methods for proofs (i.e. truth tables, tautological
consequence)
We now want to find a set of formal rules: a syntactic method

This way, we can construct proofs mechanically
Formal here means that we will not pay attention to the semantics of what we write,
just the syntax

A ⊢ B means that B is formally deducible from A
Similar to ⊨, but proof method is very different

Conventions

Σ refers to a set of formulas
Σ ⊢ A means that A is formally deducible from Σ
Σ ∪ {A} can be written as Σ, A

Σ ∪ Σ′ can be written as Σ, Σ′ where Σ and Σ′ are sets of formulas
A ⊢⊣ B ≡ A ⊢ B ∧ B ⊢ A

11 rules of formal deduction
Name Abbr. Rule

Reflexivity Ref A ⊢ A is a theorem

Addition of
premises

+ If Σ ⊢ A is a theorem, then Σ, Σ′ ⊢ A is also a theorem

¬ elimination ¬−
If Σ, ¬A ⊢ B is a theorem and Σ, ¬A ⊢ ¬B is also a theorem,
then Σ ⊢ A is a theorem

⟹  elimination ⟹ −
If Σ ⊢ A ⟹ B is a theorem and Σ ⊢ A is a theorem, then
Σ ⊢ B is a theorem

⟹  introduction ⟹ + If Σ, A ⊢ B is a theorem, then Σ ⊢ A ⟹ B is a theorem

∧ elimination ∧−
If Σ ⊢ A ∧ B is a theorem and Σ ⊢ A is a theorem, then so is
Σ ⊢ B



Name Abbr. Rule

∧ introduction ∧+
If Σ ⊢ A is a theorem and Σ ⊢ B is a theorem, then Σ ⊢ A ∧ B

is a theorem

∨ elimination ∨−
If Σ, A ⊢ C is a theorem and Σ, B ⊢ C is a theorem, then
Σ, A ∨ B ⊢ C is a theorem

∨ introduction ∨+
If Σ ⊢ A is a theorem, then Σ ⊢ A ∨ B and Σ ⊢ B ∨ A are
theorems

⟺  elimination ⟺ −
If Σ ⊢ A ⟺ B and Σ ⊢ A are theorems, then so is Σ ⊢ B

(same with A and B switched)

⟺

introduction
⟺ +

If Σ, A ⊢ B and Σ, B ⊢ A are theorems, then so is
Σ ⊢ A ⟺ B

These rules are really just templates (schemes) for creating families of rules

Proof example

Prove the membership rule: If A ∈ Σ, then Σ ⊢ A

Suppose A ∈ Σ and Σ′ = Σ − {A}. We have A ⊢ A by reference and so A, Σ′ ⊢ A by
addition of premises

Here, we must act in individual steps and cite the rule that we use. This is formatted as a
numbered list of steps with the rule written to the right

We might choose to cite previous steps on the right as well
We have proven a new theorem: ∈

Name Abbr. Rule

Membership rule ∈ If A ∈ Σ, then Σ ⊢ A

We can invoke proved theorems without justification since we could just as easily insert
their proof in the proof we are writing
A demonstrated Σ ⊢ A is called a theorem or a scheme of formal deducibility
We can get a computer to check these proofs since it can check if we used the rules
correctly



We also have the following formal deduction rules (which must be proven to use)

Intuitive meanings of rules
¬ elimination

Expresses proof by contradiction since we derive a contradiction from deriving both B and
¬B from ¬A

Therefore, A must be true (or rather, Σ ⊢ A a theorem)

∨ elimination

Recap: If Σ, A ⊢ C is a theorem and Σ, B ⊢ C is a theorem, then Σ, A ∨ B ⊢ C is a theorem
Expresses the idea of proof by cases
Here, the premises of the cases are Σ, A and Σ, B

If we reach the same conclusion in both cases (in this case, C), then we can conclude that
Σ, A ∨ B ⊢ C

⟹  introduction



Recap: If Σ, A ⊢ B then Σ ⊢ A ⟹ B

Here, if we have Σ ⊢ A, using Σ vs. Σ, A as premises will have the same effect
Therefore, if Σ, A ⊢ B, we must also have Σ ⊢ B, and since we have A as well,
Σ ⊢ A ⟹ B must also be true

Formal Deducibility complete definition
A formal system is specified by a set of deduction rules
A formula A is formally deducible from Σ (written Σ ⊢ A) if and only if we can generated
Σ ⊢ A by a finite number of applications of the rules of formal deduction
This sequence of rule applications is called a formal proof
To check a sequence of steps is actually a formal proof, we must check if the rules are
applied correctly at each step and if the last term is what we wish to prove
Although it may be difficult to find a proof, it is significant that proofs can be checked
mechanically

Finding proofs
We can check proofs, but how do we find them?
One strategy: working backwards

For our last line, what rules can be used to generate that line?
We can find a statement that can be used to prove the last line using one rule
application
Next, we must just prove that
This moves us closer and closer to our goal each time

A line in a proof can be used several times
A line can be

1. On its own (ex. A ⊢ A)
2. Be a previously proved theorem
3. Be based on previous line(s) (not necessarily the the one preceding it directly) by

using
A rule of formal deduction
A proved theorem

If the conclusion is an implication, use ⟹ + to add premise of the implication to the set
of premises Σ

I.e. Σ, A ⊢ B

If one of the premises is a disjunction, use ∨− to split into cases and prove separately
If a direct proof is difficult, try proving the contrapositive instead, then use the flip-flop
theorem (which you must prove)



If all else fails, try a proof by contradiction using ¬−

We may wish to start with a set of premises that is not Σ
I.e. when doing a proof by contradiction
We may wish to "undo" these modifications at some point in the proof so that we can
take advantage of theorems proven as part of the proof

Tautological consequence vs. deducibility
Tautological consequence (Σ ⊨ A) and formal deducibility (Σ ⊢ A) are entirely different (but
related) things

Tautological consequence: semantics
Formal deducibility: syntax

Both of these are forms of metalanguage: they are not parts of formulas themselves
I.e. ⊨ and ⊢ are not symbols in Lp

They should not be confused with ⟹
A ⊨ B iff A ⟹ B is a tautology
A ⊢ B iff ∅ ⊢ A ⟹ B

Proving statements about formal deduction
Such statements can be proven recursively

Base case: reference rule (A ⊢ A)
Recursive cases: other 10 rules (similar to Form(Lp) proof)

Some properties of formal deduction
Finiteness of premise set

If Σ ⊢ A, then there exists a finite Σ0 ⊆ Σ such that Σ0 ⊢ A

This can be proven inductively/recursively
10 cases, one for each recursive rule

Intuition: since a proof for Σ ⊢ A has finitely many steps, we only need finitely many
formulas from the premise set

Transitivity of deducibility

Let Σ, Σ′ ⊆ Form(Lp). If Σ ⊢ Σ′ and Σ′ ⊢ A, then Σ ⊢ A

Hypothetical Syllogism



Name Abbr. Rule

Hypothetical Syllogism hyp A ⟹ B, B ⟹ C ⊢ A ⟹ C

Double Negation

¬¬A ⊢ A

Proof:
¬¬A, ¬A ⊢ ¬A

¬¬A, ¬A ⊢ ¬¬A

¬¬A ⊢ A

Reductio ad absurdum

If Σ, A ⊢ B and Σ, A ⊢ ¬B, then Σ ⊢ ¬A

This holds when Σ is infinite as well, but the proof must invoke the finiteness of premises
theorem
This is sometimes denoted ¬+ since both it and ¬− formalize the idea of proof by
contradiction

¬− is stronger than ¬+

However, if ¬− is replaced by ¬+ in the ruleset, ¬− cannot be proven

Name Abbr. Rule

¬ Introduction ¬+ If Σ, A ⊢ B and Σ, A ⊢ ¬B, then Σ ⊢ ¬A

Syntactic Equivalence
A ⊢⊣ B denotes A ⊢ B ∧ B ⊢ A

If we have A ⊢⊣ A′ and B ⊢⊣ B′, then
¬A ⊢⊣ ¬A′

A ∧ B ⊢⊣ A′ ∧ B′

etc.
This is similar to tautological equivalence ≡

Replaceability of syntactically equivalent formulas

If B ⊢⊣ C, then we have A ⊢⊣ A′ when replacing any instances of B with C in A to get A′

A1, A2, … An ⊢ A iff ∅ ⊢ A1 ∧ ⋯ ∧ An ⟹ A

∅ ⊢ A1 ∧ ⋯ ∧ An ⟹ A iff ∅ ⊢ A1 ⟹ (… (An ⟹ A) …)

Special case: Σ = ∅



If ∅ ⊢ A, then A is formally provable (full stop)
Example: the laws of non-contradiction ¬(A ∧ ¬A) and the excluded middle (A ∧ ¬A)
are formally provable

Why prove?
Tautological consequence corresponds to informal deducibility and involves semantics
Formal deducibility is concerned with syntax
We wish to a define a system where we can formally prove everything that is semantically
correct

What makes a system of formal deduction good?

It must not be able to formally prove incorrect statements (soundness)
It should be able to formally prove every correct statement (completeness)

Soundness of a formal deduction system

A system of formal deducibility, denoted ⊢∗ is defined by a list of formal deduction rules
Soundness: "If Σ ⊢∗ A then Σ ⊨ A" is true for any Σ and A

This means that what can be proven with ⊢∗ also holds in informal reasoning
I.e. we cannot prove incorrect statements (it is sound)

Soundness theorem: If Σ ⊢ A then Σ ⊨ A, where ⊨ refers to the formal deduction made
with the 11 given rules

This is proven inductively by replacing ⊢ with ⊨ in each case (for each of the 11 rules),
then proving the statement

Completeness of a formal deduction system

Completeness: "If Σ ⊨ A then Σ ⊢∗ A" is true for any Σ and A
I.e. whatever is correct can be formally proven

Completeness theorem: if Σ ⊨ A then Σ ⊢ A where ⊢ means formal deduction based on the
11 given rules
Proof steps

1. If A1 … An ⊨ A then ∅ ⊨ (A1 ⟹ … (An ⟹ A) …)

2. If ∅ ⊨ A then ∅ ⊢ A (every tautology has a formal proof)
3. If ∅ ⊢ (A1 ⟹ … (An ⟹ A) …) then A1 … An ⊢ A

Connection between syntax and semantics



The Soundness and Completeness Theorems associate the syntactic notion of formal
deduction, based on the 11 rules, with the semantic notion of tautological consequence,
and establish the equivalence between them.

Proving Invalidity and Logical Fallacies
Formal deduction cannot be used to prove that an argument is invalid

Fallacy of denying the antecedent

If T ⟹ A and ¬T , then ¬A

A can still be true; if ¬T , we simply don't know anything about A

This is the error behind assuming the converse of an implication to be true

Fallacy of affirming the consequent

If P ⟹ ¬Q and ¬Q, then P
We don't actually know anything about P
We have assumed the converse to be true, which it may not

Summarized by the following joke:

“Why are you standing on this street corner, waiving your hands?”
“I am keeping away the elephants.”
“But there aren’t any elephants here.”
“You bet: that’s because I’m here.”

Consistency and Satisfiability
A set of formulas Σ is consistent if there is no formula F  such that Σ ⊢ F  and Σ ⊢ ¬F

Otherwise, it is inconsistent
Lemma: A set Σ of formulas is satisfiable if and only if Σ is consistent

Proof is by contradiction: assume that Σ is inconsistent (for →) and and not satisfiable
(for ←)



Lecture 7 - Resolution Proof Systems
Motivation for resolutions

We have already learned about formal deduction; why do we need another proof system?
Formal deduction appeals to intuition

This is good when people are the ones writing proofs because they can draw from
their experience
However, we cannot write algorithms for finding proofs, so they cannot be generated
mechanically

On the other hand, the resolution proof system is less intuitive, but can be much more
easily automated
Resolution is used in industry

Resolution Rule
Starting assumption: Out starting formulas A and B are both written as some disjunction of
literals (ex. A = p ∨ ¬q ∨ ¬r)
To apply the resolution rule to A and B, there must exist a propositional symbol that occurs
in A and whose negation occurs in B (or vice versa)

So, A = p ∨ C and B = ¬p ∨ D for some p, C, D

Then, the resolvent of A and B is C ∨ D

The leftovers after p are resolved with ¬p

{A, B} is satisfiable ⟺ C ∨ D is satisfiable
Explanation

If we are trying to determine if {C ∨ p, D ∨ ¬p} is satisfiable, one of p and ¬p will
always be false, so whether it is satisfiable comes down to C ∨ D, since only these
remain

Determining if a set of clauses is satisfiable
Recall that Σ ⊨ A if and only if Σ ∪ {¬A} is unsatisfiable
So, if resolution can determine the satisfiability of a set of formulas, then it can also answer
questions about tautological consequence

I.e. argument validity

Two outcomes of a resolution proof



We resolve everything we can, arriving at the empty clause {}

This is not satisfiable, so the argument must be valid

Why is this unsatisfiable?
In a disjunction, at least one member must be true to make the disjunction true
By definition, an empty disjunction {} has no true items, so it cannot be true

We resolve everything we can, arriving at the empty set ∅
This is satisfiable (by definition), so the argument must be invalid

Soundness of resolution formal deduction

Theorem: the resolvent is a tautological implication of its parent clauses, which makes it a
sound rule of formal deduction
Proof: we essentially need to prove {p ∨ A, ¬p ∨ B} ⊨ A ∨ B if we know that
{p ∨ A, ¬p ∨ B} ⊢ A ∨ B

Cases: A and B are both empty, at least one is not empty
Proof is fairly trivial

Set of support strategy
Motivation: if we don't know what to resolve when, we may keep going around in circles,
unable to find a proof
Strategy: Set of support is the set of formulas obtained, in some number of steps, from
the negated conclusion
Every resulting step must use at least on formula from the set of support
Example:

Prove {(s ∧ h) ⟹ p, s, ¬p} ⊨ ¬h

Convert first element into CNF: ¬s ∨ ¬h ∨ p

So, we can use the following set for a resolution: {¬s ∨ ¬h ∨ p, s, ¬p}

We can start deriving the set of support. Every time we derive a new statement, it
becomes part of the base of support

h from the negated conclusion
¬s ∨ p from ¬s ∨ ¬h ∨ p and h
¬s from ¬p and ¬s ∨ p

{} from s and ¬s

Since we obtained {}, the set is unsatisfiable
In general, we would write out the premises and set of support in a numbered list and
refer to items by their number instead

1. ¬s ∨ ¬h ∨ p

2. s



3. ¬p

4. h
5. ¬s ∨ p

6. ¬s

7. {}

Davis-Putnam Procedure
Clauses as sets

Every clause corresponds to a set of literals, i.e. those in the clause
p ∧ q ∧ r corresponds to {p, q, r}, etc.
We can use a set because having duplicate terms in a clause will have no effect on it

For these reasons, we can refer to clauses as sets, and use set notation in addition to
logical notation

So, the resolvent of C ∪ {p} and D ∪ {¬p} is [(C ∪ p) ∪ (D ∪ ¬p)] p, ¬p

Davis-Putnam Procedure

Given a non-empty set of clauses using the variables p1 … pn, the DPP repeats until there
are no variables left

1. Remove all clauses that contain both p and ¬p, since a disjunction involving these is
always true and will thus never lead to a contradiction

2. Choose a variable pk that appears in one of the clauses
3. Add all the possible resolvents using resolution on p to the set of clauses
4. Discard any clauses that contain p (or ¬p)
5. Discard duplicate clauses

This is known as eliminating p
Stopping conditions

If a step resolves {p} and {¬p}, then the empty clause {} will be obtained, which ends
the procedure and proves that the argument is valid

I.e. it shows that the argument with its negated conclusion is not satisfiable ->
never corrected

If there is never a step that resolves {p} and {¬p}, then all the clauses will end up
getting discarded and the empty set ∅ will be produced. This means the argument is
invalid

I.e. no contradiction was found when the negated conclusion was included, so the
argument is invalid



Example

Apply the DPP to the set of clauses {{¬p, q}, {¬p, ¬r, s}, {p}, {r}, {¬s}}

Eliminating p gives {{q}, {¬q, ¬r, s}, {r}, {¬s}}

Eliminating q gives {{¬r, s}, {r}, {¬s}}

Eliminating r gives {{s}, {¬s}}

Eliminating s gives {}

Since the output is an empty clause, the argument must be valid

Notational Conventions

If the set of clauses is large or complex, we can give each clause an identifier Ti to keep
track of it
Then, when we produce the resolvents in the next step (Ui), we list the identifiers that led to
each resolvent instead of the clauses themselves

Soundness and Completeness of DPP

Let S be a finite set of clauses
S is not satisfiable ⟺  the output of DPP on S is the empty clause {}

Proof idea
Resolution propagates satisfiability forwards: if the parent clauses are satisfiable, then
the resolvents will be as well
This also happens in reverse

S ⊢ {} by DPP ⟺  S is not satisfiable
Proof idea

Somewhere, there must be a resolution derivation from S to {}

Thus, by soundness, S must not be satisfiable
The other direction is provable by contradiction

Proving Invalidity with DPP

Example: Affirming the consequent (assuming the converse is true)
If it's raining, then the streets are wet. The streets are current wet. Therefore, it must
be raining.

Set of clauses: {{¬r, w}, {w}, {¬r}}



Lecture 10 - First Order Logic
Alternative names: predicate logic, predicate calculus, elementary logic, restricted
predicate calculus, restricted functional calculus, relational calculus, theory of
quantification, theory of quantification with equality
In propositional logic, a proposition is either true or false

Because of this, there are some perfectly logical arguments that cannot be expressed
in propositional logic

Example of argument inexpressible with propositional logic

1. All humans are mortal
2. Socrates is a human
3. Therefore, Socrates is mortal

Here, each of these arguments would be expressed as a single propositional variable. It
would look something like

1. p
2. q
3. therefore, r

This is obviously not allowed
All humans are mortal has to be written as an implication (humanity implies morality)
for this to work with predicate logic

We need a way to associate individuals and their properties
This is the objective of first order logic, which extends propositional logic

Elements of first order logic
Usually used to explain mathematical theories; elements are geared towards this

Unique to FOL

A domain of objects (individuals)
Ex. N

Designated individuals
Ex. 0
Remember, 0 and 1 are not technically part of predicate logic

Relations



Ex. =, ≥

Functions
Ex. +, ×, successor function

Also present in predicate logic

Variables that are part of the domain (propositional variables)
Logical connectives (¬, ∧, ∨, ⟹ , ⟺ )
Quantifiers (∀, ∃)

This is usually stated verbally, but can be symbolic as well
Punctuation

Domain
Consider the propositional statement Joan is Paul's Mother

It is ambiguous because we can only know if it is true with context, as well as because
there are multiple people named Joan and Paul, etc.

For this statement not to be ambiguous, we need to define a domain
In this example, the domain may be any group of people that includes these two (and
presumably doesn't include others with the same name)
Often, the domain is mathematical in nature (I.e. a set)
The truth of a statement may depend on its domain

Ex. The statement "there is a smallest number" is true of set domain {1, 2, 3, 4, 5} but
not of R

Individuals

Individuals are members of a domain
To avoid trivial cases, it is assumed that a domain contains at least one individual
Individuals are sometimes called objects
To refer to a specific individual, identifiers must be used

These are called individual symbols
Ex. to refer to a natural number, the digits 1-9 must be used

Relations
Relations make statements about individuals

These can also be called predicates, extending their definition
Ex. Mary and Paul are siblings

Ex. The sum of 2 and 3 is 5



In each relation, there is a list of individuals, called the argument list, and something
relating them (the relation)

From the first example
Argument list: Mary and Paul
Relation: are siblings

Notation

Each relation is given a name, which is followed by the argument list
The argument list is enclosed in parentheses
Single letters are often used for arguments and relations
The order of the arguments is important
In aggregate, each relation seems to look and behave like a function that takes parameters

Arity
Arity: the number of elements in the argument list
The arity of a relation is fixed

Therefore, two relations must be different if they have different arities

A relation with arity n is an n-ary relation symbol
A one-place (1-ary) relation is called a property

I.e. Human(Socrates)  and Mortal(Socrates)

Variables
Sometimes, we don't want to give properties to a particular individual, but a whole set of
them
To do this, we can use a variable

Ex. Human(u)  denotes u is human
Ex. Sum(a, b, c)  denotes the sum of a and b is c

Formulas
A relation name followed by an argument list in parentheses is an atomic formula
These take True/False  values and can be combined using logical connectives

This is works the same as it does with propositions
So, we can write things like Human(Socrates)  -> Mortal(Socrates)

mother(Joan, Mary)
m(J, M)



If all arguments in the relation are in the domain, an atomic formula must either be true or
false

Expressing the values of relations

Since the domains now consist of more than {0, 1}, we can no longer express the behavior
of a formula for all of its domain using a truth table
Instead, we must use a regular table/matrix

Each row/col is populated with each element in the domain (if not infinite)
The corresponding entry denotes whether relation(row, col)  is 1 or 0
This works for a two-parameter relation; if the relation has n parameters, the
corresponding table will be n-dimensional
Luckily, most mathematical relations do not have more than 2 arguments

Example: relation table for greater(u, v)

u/v 1 2 3 4

1 0 0 0 0

2 1 0 0 0

3 1 1 0 0

4 1 1 1 0

Formulas and terms
Like in propositional logic, we can give names to formulas:

A = [Human(u) ⟹ Mortal(u)]

A variable can be used anywhere an individual can
Together, variables and individuals are called terms

Quantifiers
Quantifiers signify how often things are true
Variables are bound by quantifiers
These quantifiers depend on the domain
Universal Quantifier: A(u) is true for all values of u (∀u,A(u))

Names: "for all", "given any", "given an arbitrary", etc
Ex. "Everyone needs a break": ∀p, break(p)

Existential Quantifier: A(u) is true for at least one u (∃u,A(u))
Usually called "there exists", can also be called "for some"



In first order logic, there is no direct expression for the quantifier "For no individuals in the
domain"

However, both ¬∃xP(x) and ∀x¬P(x) are both correct (more on why later)

Quantifiers are treated like unary connectives
They take higher precedence than binary connectives

Quantifiers with subsets

Here, some subset of the domain has property a(x), and some subset of that has b(x)

∀x(a(x) ⟹ b(x)) means all members in the domain a(x) have property b(x)

NOT ∀x(a(x) ∧ b(x)) (this suggests all x are both a(x) and b(x))
All dogs are mammals: ∀x(dog(x) ⟹ mammal(x))

∃x(a(x) ∧ b(x)) means some a(x) are b(x)

Some dogs are brown: ∃x(dog(x) ∧ brown(x))

Only dogs bark: ∀x(barks(x) ⟹ dog(x))

Bound vs. Free Variables

A variable is bound if it appears in a quantifier
Bound variables are within the local scope of the quantifier

Otherwise, a variable is free

Socrates
Return to the syllogism

# Premise FOL translation

1 All humans are mortal ∀x(Human(x) ⟹ Mortal(x))

2 Socrates is human Human(Socrates)

Conclusion Socrates is mortal Mortal(Socrates)

Socrates' most famous quote: "I know that I know nothing"

Nested Quantifiers
Nested quantifiers can exist
∀ and ∃ are not commutative: their order matters

However, ∀x∀y means the same as ∀y∀x (and same with ∃)
Having nested quantifiers can be thought of like using nested loops



Negating Quantifiers
The negation of an existential quantifier is a universal quantifier with the interior expression
negated, and vice versa

I.e. ¬∀xP(x) ≡ ∃x¬P(x) and ¬∃xP(x) ≡ ∀x¬P(x)

This stems from De Morgan's Laws:
The universal quantifier is like conjunction:
∀xR(x) = 1 ⟺ R(d1) ∧ R(d2) ∧ ⋯ ∧ R(dn) = 1, where the domain is D = {d1 … dn}

In the same way, the existential quantifier is like disjunction
Negating a conjunction yields the disjunction of the negations of the variables; so, the
negation of a universal quantifier yields the existence of the negation of the interior
expression

∀ is a generalized ∧ and ∃ is a generalized ∨



Lecture 11 - Syntax of First order Logic
In propositional logic, formulas are built recursively from atoms and the rules concerning
connectives
In first order logic, we need more specific formula rules

Domain: a specification of the basic objects
Terms: expression that refer to objects in the domain
Atomic formulas: use relations to combine symbols into simple true/false propositions
Formulas: Build recursively from atomic formulas using connectives
{¬, ∧, ∨, ⟹ , ⟺ } and quantifiers {∃, ∀}

First Order Languages
No single first order language exists. Instead, each case requires a combination of

Logical Symbols: Fixed syntactic use and semantic meaning (ex.
¬, ∧, ∨, ⟹ , ⟺ , ∀, ∃)
Non-logical symbols (parameters): Symbols with designated syntax but non-
predefined meaning, i.e. math symbols (0, ≥, ×, successor function s(x))

The Language L of first-order logic
L consists of expressions using the following basic symbols

Logical Symbols
Connectives: ¬, ∧, etc.
Free variable symbols
Bound variable symbols
Quantifiers: ∃, ∀
Punctuation: (),′′,′

Non-logical symbols
Constants (aka. individual symbols)
Relation symbols/predicate symbols (formulas in Lp?)
Function symbols (f(x), etc.)

L is not a single language; we can choose which non-logical symbols we want
Each relation symbol and function symbol has an arity
L may or may not contain the equality symbol ≈

If it does, L is called a first order language with equality



Terms of L

Term: either an individual or a variable (i.e. anything that can be used in place of an
individual).
Functions taking terms as parameters are also terms
Terms name an object in the domain; they act like nouns (individuals) and pronouns
(variables) in the English Language

Example: First order language of number theory

Equality relation: yes
Relation symbols: >
Constant symbols: 0
Function symbols

Arity 1: s (successor; s(0) is 1, s(1) is 2, etc.)
Arity 2: + and ×

Example of a term: +(u, 0), (s(s(0))), more commonly written as u + 0 and 2

Atomic formulas of L

Simples formula expressing a proposition
Must be in one of the following two forms

F(t, … , tn) where F  is an n-ary relation symbol and t1, … tn ∈ Term(L)

≈ (t1, t2), where t1, t2 ∈ Term(L) (not sure why this isn't a subcase of the first form)

Formulas of L

Built recursively, with atoms being the base case, using rules that describe when
connectives and quantifiers may be used
Formation rules

Every atom is a formula (Atom(L) ⊂ Form(L))
If A is a formula in Form(L), then ¬A is also a formula in Form(L)

If A and B are formulas in Form(L), then A ∧ B, A ∨ B, A ⟹ B, and A ⟺ B are
formulas in Form(L)

If A(u) is a formula in Form(L) with free variable u and x is a variable not present in
A(u), then ∀xA(x) and ∃xA(x) are formulas in Form(L) (A(x) denotes A(u) where u
is replaced with x)

A formula (or term) is closed if it has no free variables; a closed formula is also known as a
sentence

The set of sentences is denoted Sent(L)



Example of a formula: ∀x∀y((x < y + 1) ⟹ ∃z((x < z) ∧ (z < y))

There are eight types of formulas in Form(L): atoms, formulas joined with connectives
(x5), and quantified formulas (x2)
A parse tree can be made for a given formula



Lecture 12 - Semantics of First Order Logic
Although L is purely syntactic, formulas in Form(L) are meant to express statements with
semantic meaning
Like before, a truth valuation assigns truth values to proposition symbols and a truth value
is determined
A valuation of L consists of an interpretation of its non-logical symbols and assignment
of values to its free variables

Must contain sufficient information to determine a truth value

Logical Symbols
Connectives are interpreted as they are in propositional logic
Logical symbols in L: connectives, quantifiers, the equality symbol ≈, variable
symbols, and punctuation symbols

Non-logical symbols
A valuation is an interpretation plus an assignment
Interpretation consists of:

A set of objects that (domain)
A specification for each individual symbol, relation symbol, and function symbol of the
actual individuals, relations, and functions that are denoted

Assignment: assigns a free variable to a value in the domain
A valuation v of a symbol s is denoted sv

If L is not associated with a theory or structure (ex. number theory), the domain can be an
arbitrary non-empty set and all non-logical symbols, relations, and functions are arbitrary

Describing relations as sets

An n-ary relation R on the set D can be thought as a subset R of Dn = D × D × ⋯ × D

Specifically, R = {(a1, … , an) ∣ ai ∈ D,  and R(a1, … an) = 1}

Ex. equality: {(x, y) ∣ x, y ∈ D and x = y}

Valuations: formal definition
A valuation for the first order language L consists of

A domain D (must be non-empty)



The domain must be non-empty because everything is vacuously true following an
empty domain

A function v with the following properties
1. For each individual symbol a and free variable u, av,uv ∈ D

2. For each relation symbol F  with arity n, F v is an n-ary relation on D (i.e. F v ⊆ Dn)
3. For each m-ary function symbol f, we have f v : Dm → D

Valuations are the interpretation of individual symbols, relation symbols, function symbols
and the assignment of values to free variable symbols

Value of a term

The value of a term t under valuation v over the domain D is denoted tv and is defined
recursively

If t is an individual symbol a or free variable u, then its value is av ∈ D or uv ∈ D

If t is an m-ary function f(t1, … tm) where each ti is a term, then
f(t1 … tm)v = f v(t1

v, … tm
v)

If v is a valuation over D and t is a term, then tv ∈ D

Qualified formulae

For a valuation v, free variable u, and individual d ∈ D, v(u/d) denotes the valuation that is
the same as v, except u is replaced with d

I.e. wv(u/d) is d if w = u and wv otherwise

∀xA(x)v is 1 if A(u)v(u/d) = 1 for every d ∈ D (i.e. every value in the domain leads to 1) and
0 otherwise
∃xA(x)v is 1 if A(u)v(u/d) = 1 for some d ∈ D (i.e. at least one value in the domain leads to
1) and 0 otherwise

Value of a formula

Recursive definition of valuation v with domain D
R(t1, … tn)v is 1 iff (tv1, … tvn) ∈ Rv ⊆ Dn

(¬A)v is 1 if Av is 0
(B ∧ C)v is 1 if both Bv and C v are 1
etc. with the rest of the regular connectives
∀xA(x)v and ∃xA(x)v as defined above

Satisfiability and universal validity
A formula A ∈ Form(L) is satisfiable iff there exists a valuation v such that Av = 1



Ex. A = f(g(a), g(u)) ≈ g(b)

One true valuation: f is addition, g is squaring, a is 3, u is 5, and b is 5
However, there are valuations do not lead to 0

Otherwise, it is unsatisfiable
A formula A ∈ Form(L) is universally valid iff Av = 1 for every valuation v

Ex. A = F(u) ∨ ¬F(u)

These are the counterparts of tautologies in Form(Lp)

The same definition can apply to a set of formulae Σ ⊆ Form(L)

In general, there is no algorithm for deciding the universal validity or satisfiability of
formulas in first-order logic (Church, 1936)

Comparison: higher-order logic
First order logic: variables range over members of the domain
Second order logic: subsets of the domain and relations on the domain can be used as
variables

Ex. "Every non-empty subset of natural numbers has a smallest element"

Higher-order logic: variables (and quantifiers) for sets of sets, sets of sets of sets, etc. are
also allowed

History of Logic Timeline
Aristotle: earliest study of formal logic
George Boole: propositional logic
Gottlob Frege: domains, variables, relations, functions, quantifiers

Intended to express all of mathematics
However, Bertrand Russel pointed out a paradox of Frege's system: the set
R = {S ∣ S is a set, and S ∉ S} (the set of sets that do not contain themselves)

Is R a member of itself? This is a paradox

Restricting to first-order logic avoids Russel's paradox



Lecture 13 - Logical Consequence in First
order logic

The notation ⊨ is used for logical consequence as well
We have Σ ⊨ A iff Σv = 1 ⟹ Av = 1

We have also use ⊭ and ≡ in the same way as propositional logic
≡ still denotes logical equivalence

Proving arguments
Proof by contradiction: we assume the negation of the conclusion and show that the
resulting argument is invalid
We proceed in logical steps to find it
Finding a counterexample usually involves deriving some ∃ formula

This can be achieved by negating a ∀

Refuting arguments

This can be done by finding a single counterexample

Empty Premises (proving universal validity)
We have ∅ ⊨ A iff A is universally valid, since ∅ is vacuously true under any valuation

Therefore A must be true under any valuation for the implication to be correct

Universal validity can be proven by contradiction
The opposite can be proven by counterexample

It is not always possible to determine whether a formula is universally valid (Church)
Some formulas can (ex. ∀xP(x) ∨ ¬(∀xP(x)))

Replaceability and Duality in FOL
Replaceability: Let A ∈ Form(L) contain subformula B ∈ Form(L). Let B ≡ C and A′ be
the formula where B is replaced with C in A. Then A ≡ A

′

Recursive: we have ∀xA(x) ≡ ∀xA′(x), ∃xA(x) ≡ ∃xA′(x), ¬A ≡ ¬A′, etc.



Duality: Let A ∈ Form(L). Derive Δ(A) from A by swapping ∧ and ∨, ∃ and ∀, and each
atom with its negation. Then ¬A ≡ Δ(A)



Lecture 14 - Formal Deduction in First order
logic

For Lp, we defined a calculus of reasoning: the 11 rules of formal deduction. This let us
prove things semantically
We would like to extend this system to handle first order logic

We would like to be able to formally prove anything that is semantically correct

For this, we add 6 additional rules concerning quantifiers and the equality symbol ≈

Abbr. Rule

∀− If Σ ⊢ ∀xA(x) is a theorem, then Σ ⊢ A(t) is a theorem where t is a term

∀+ If Σ ⊢ A(u) is a theorem and u is not in Σ, then Σ ⊢ ∀xA(x) is a theorem

∃− If Σ, A(u) ⊢ B is a theorem and u is not in Σ or B, then Σ, ∃xA(x) ⊢ B is a theorem

∃+ If Σ ⊢ A(t) is a theorem, then Σ ⊢ ∃xA(x) is a theorem (some ts are replaced with x)

≈ −
If Σ ⊢ A(t1) and Σ ⊢ t1 ≈ t2 are theorems, then Σ ⊢ A(t2) is a theorem (some
replacement)

≈ + ∅ ⊢ u ≈ u is a theorem

Explanations
∀+

Intuitive meaning: if any element of a set has a given property, then every element must
have the property

"Any" here means an arbitrary element, not any particular one
u cannot be in Σ because the choice of u must be independent of the premises
If u appears in a premise as a free variable, it would be "fixed" because it would
always refer to that same individual

∃−

Once again, u cannot be in Σ because the choice of u must be independent of the
premises

Formal Deducibility



Let Σ ⊆ Form(L) ∋ A. A is formally deducible from Σ in first-order logic ⟺  Σ ⊢ A can
be generated using the 17 rules of formal deduction

Replaceability and Duality
Replaceability: Let A, B, C ∈ Form(L) with B ⊢⊣ C. Let A′ be A with some (not
necessarily all) instances of B replaced with C. Then A′ ⊢⊣ A.
Duality: Let A ∈ Form(L). Derive Δ(A) from A by swapping ∧ and ∨, ∃ and ∀, and each
atom with its negation. Then ¬A ⊢⊣ Δ(A)

Soundness and Completeness
Let Σ ⊆ Form(L) and A ∈ Form(L). Then Σ ⊨ A iff Σ ⊢ A

Soundness: Σ ⊢ A implies Σ ⊨ A

Completeness: Σ ⊨ A implies Σ ⊢ A

Proof strategies
1. Ignore the quantifiers at first and try to figure out the proof using propositional logic. Once

we know the shape, our proof may look like:
Remove quantifiers using ∀− and ∃−

Propositional logic proof
Introduce quantifiers using ∀+ and ∃+

2. If one of the premises in Σ is existentially quantified, ∃ can be removed by
Replacing the premise ∃xA(x) with A(u), resulting in Σ′

Continue the proof using Σ′ as the premises
Use ∃− to reintroduce ∃ at the end. u must not appear anymore in the premises or the
conclusion



Lecture 15 - Resolution for FOL
Prenex normal form

Prenex normal form: all quantifiers are at the start of the equation
i.e. in the form Q1x1(Q2x2(… Qnxn(B))) where Qi is a quantifier, xi is a bound
variable, and B is a quantifier-free expression
B is called the matrix, Q1x1 … is called the prefix
An expression with no quantifiers is trivially in prenex normal form

Algorithm for converting to PNF

Every formula in Form(L) is logically equivalent to a formula in PNF
It can be found using the following steps:

1. Eliminate all occurrences of ⟹  and ⟺
2. "Apply negations" so that only atoms are negated. Usually requires De Morgan's laws,

double negation, etc
3. Standardize the variables apart wherever necessary

Meaning: make sure that separately bound variables all have different names (i.e.
there are two different xs in ∀x(A(x) ∨ B(x)) ∨ ∃xC(x))
This is fine due to the replaceability of bound variable symbols

4. "Move" all the quantifiers to the front of the formula
This can be done if the equation being "moved over" doesn't depend on the
variable bound by the quantifier

∃-free PNF

Must be in PNF and not contain any ∃ symbols
Algorithm for generating:

1. Convert to PNF
2. For each ∃: For each ∀ (starting with the outermost one), replace the existentially

bound variable with the appropriate skolem function

Skolem functions

Consider the sentence ∀x1∀x2 … ∀xn∃yA

∃yA generates at least one individual for n-tuple (a1, … an) in the domain
I.e. y can be expressed as a function of x1, … xn, i.e. f(x1, … xn)



f is called a Skolem function, and must be denoted by a new function symbol that does not
occur in A
The skolemized version of ∀x1∀x2 … ∀xn∃yA is ∀x1∀x2 … ∀xnA′, where each occurrence
of y in A′ is replaced with its skolem function f(x1, … xn)

It is possible to actually define this function
The skolemized function is not (generally) logically equivalent to the original sentence,
since the existential quantifier may imply more than one individual
If we think of individual symbols as function with arity 0, the skolemized sentence is valid
even if there are no universal quantifiers

Dropping ∀
Let F ∈ Sent(L) and F ′ denote the PNF of F
F ′ is satisfiable ⟺  there is an effective procedure for finding an ∃-free PNF of F ′ such
that F  is satisfiable
Once all the ∃ have been removed, we can drop the universal quantifiers since sentences
without quantifiers are implicitly assumed to be universally quantified

I.e. ∀y∀zP(x, y, z) becomes P(x, y, z)

Converting to clauses
Given a sentence F  in ∃-free PNF, a finite set of clauses CF  can be constructed such that (
F  is satisfiable ⟺  CF  is satisfiable)

Algorithm
Convert to ∃-free PNF if necessary
Put the matrix of F  into CNF
Read off the clauses

Validity and Satisfiability of clause set

Let Σ be a set of sentences and A be a sentence. The argument Σ ⊨ A is valid ⟺  the
set CΣ,¬A = ⋃

F∈Σ

CF ∪ C¬A is not satisfiable

I.e. the set of clauses from the premises and the clauses from the negated conclusion

So, if we wish to show the validity of an argument, we must show that CΣ,¬A is not
satisfiable.

We can use resolution to find this

Resolution for FOL
Resolution works similarly for FOL compared to propositional logic



Unification

Instantiation: An assignment of a quasi term ti to a variable xi.
A quasi-term is either an individual symbol, a variable symbol, or a function symbol
applied to either of the above two

Unification: Two FOL formulas unify if there are instantiations that make the formulas
identical

The instantiation in question is called the unifier
This works because all variables are universally qualified

Example: Q(a, y, z) and Q(x, b, c) can be unified using the instance (y := a, z := b, x := c)

Not all expressions can be unified
Ex. Q(a, b, y) and Q(c, b, y) cannot be unified because we can't make individual a
individual c since they occupy the same place

Resolution

We use unification to create complimentary literals so that we can apply resolution
As before, we can resolve p ∨ A(x) and ¬p ∨ B(x) to A(x) ∨ B(x)

We can discard resolutions that are universally true, since they will never lead to a
contradiction

We can also discard duplicate literals

A clause can be used as a parent multiple times (and can be instantiated multiple times)

Automated Theorem Proving

A theorem is a logical argument with several premises and a conclusion
To prove theorem automatically, we must transform the premises and negated conclusion
into clauses:

Convert each formula to PNF
Replace ∃s with skolem functions
Drop the ∀s (by convention)
Convert the matrix to CNF and extract clauses

Then, we must use unification to create complimentary literals to determine a resolvent
If the empty clause {} is reached, the set is not satisfiable and the theorem is valid
Examples of programs for this: E (prover for first order logic with equality), SPASS, Vampire

Automatic Theorem Verification

We can also verify that proofs are correct mechanically
Programs that do this are often called proof assistants



Instead of creating new proofs, it just checks
Examples: Isabelle (higher-order logic), Coq (interactive theorem prover)

Soundness and Completeness of Resolution

A set S is not satisfiable iff there is a resolution derivation of the empty clause {} from S
Soundness: empty clause → not satisfiable
Completeness: not satisfiable → empty clause



Lecture 16 - Decidability and Computability
What is an algorithm?

Finite sequence of well-defined, computer-implementable instructions to perform a
computation
It solves a problem if it produces a correct output for every input
There exist problems that cannot be solved by a computer algorithm

Halting Problem
We cannot write a program that takes a program P  and its input I and return whether P
halts (stops running) with input I.

Proof of the Halting Problem

The proof is by contradiction
Assume that there is an program H(P , I) that solves that halting problem by outputting
"halts" if the program halts and "loops forever" if it doesn't
This program must be expressed in the form of a string of characters/bits, so it can itself be
used as data
So, we should be able to compute H(P ,P)

Construct a program K(P) that halts if H(P ,P) prints "loops forever" and goes into an
infinite loop if H(P ,P) outputs "halt"

I.e. has the opposite output of H(P ,P)

What happens if we call K(K)?
Case: K(K) halts. So H(K,K) must have outputted "halts" by definition. However, by
the construction of K(K), K(K) must have looped forever (contradiction)
Case: K(K) loops forever. So, H(K,K) must output "loops forever". However, by the
construction of K(K), K(K) must have halted (contradiction)
Thus, by contradiction, the program H(P , I) cannot exist

Turing Machines
Informal description

Turing machine: simple mathematical model of a computation
Consists of



Finite control unit: has read-write head and can be in a finite amount of states
Two-way infinite tape, divided into cells. The cells can be read and written to, and can
affect the state of the machine

Formal description

Turing machine: T = (S, I, f, s0)

S: infinite set of states
I: input alphabet (finite set of symbols) that contains the blank symbol B
so ∈ S: the initial state
f : S × I → S × I × {L,R}: transition function

The machine moves along the tape and performs an action at each step
This action is determined by the transition function f, which takes the current state and
tape symbol into account
If we have current state s and current symbol x, then we have f(s,x) = (s′,x′, d),
where s′ is the new state, x′ is written to the current cell, and d determines the
direction moved (d can be L or R)
This can be written as the 5-tuple (s,x, s′,x′, d), which is a transition rule

The function is kind of like a the set of transition rules
If the tuple (s,x) is undefined, then the machine halts

The last state before this happens is called the final state

TMs are often defined by a set of transition rules or a transition diagram, where each state
represents a node, the initial and final states are specified, and transition rules are arrows

Alternate Representation

We can denote T = (S, I, f, s0) as α1sα2, where s ∈ S is the current state and α1α2 is the
content of the tape (α1 is the string before the head, α2 is the string after it)

Graphical Representation



States are represented by nodes
Transition rules are represented by arrows (directed edges) labeled r,w, d
A computation is a path in the graph
The starting state is an incoming arrow
The final (halting) state is a double circle node

Computation

A computation consists of successive applications of the transition rules to the content of
the tape

A single application is a transition step

Languages
An alphabet Σ is a finite, non-empty set of symbols (ex. {0, 1})

Σ∗ denotes all the possible strings in that language (including the empty string λ)

A language L over Σ is a subset of Σ∗

Ex. L = {w ∈ {0, 1}∗ ∣ w is a string with an equal amount of 1s and 0s }

TMs can recognize and accept languages
Let V ⊆ I. A TM T = (S, I, f, s0) accepts a string x ∈ V ∗ iff it halts in a final state when x is
written on the tape

If T  does not halt or halts in a non-final state, then x is not accepted



T  recognizes L ⊆ V ∗ if x ∈ L and x is recognized by T

Symbols not in V  may be present in I and thus Σ; they are often used as markers

Turing machines as functions
We can think of turing machines as computing a function T (x) = y, where x is the input
(initial) string and y is the string on the tape when the function halts

The domain of T  is the set of strings for which T  halts
If T  does not halt with input x, T (x) is undefined

Using the alphabet {0,… , 9}, we can compute functions g : N → N

A total turing machine always halts, no matter the input

Computing number-theoretic functions

To compute functions f : Nk → N
m, we must be able to represent arbitrary n ∈ N on tape

We can use unary: n is represented by a string of n+ 1 1s
So, 010 is 11 and 510 is 1111111

For n-tuples, we can separate each member by an asterisk (marker character)

Variations on Turing machines

Multi-tape: has the same computing power as a regular one, and makes creating Turing
machines less tedious
Can stop at a given step instead of moving left or right
Two-dimensional tape (and directions)
Multiple tape-heads
Non-deterministic: different transition rules with the same starting state and alphabet
symbol

Instead of defining a function to determine the next state, we use a relation (not
necessarily one-to-one)

Restricted alphabet
Non-infinite tape length in one or both directions

Turing machines as a computational model

Many other types of TMs exist, but they all have the same amount of computing power
There exists a universal turing machine that can simulate all the computations of any other
turing machine (an encoding of the TM and its input is given as the input)

This is also known as a computer



Church-Turing thesis: Any problem that can be solved with an algorithm can be solved
using a turing machine

Computability and Decidability
Decision problem: yes or no question on an infinite set of inputs

Ex. Is a first-order logic formula satisfiable?
Can be thought of as a language L of input strings

Decidability: a decision problem is decidable if there is a terminating algorithm that can
solve it. Otherwise, it is undecidable

Ex. Whether an arbitrary (x ∈ N) ∈ S ⊆ N. This is undecidable for some S
If |S| is finite, then S is decidable. Some infinite S are also decidable

Decidable problems
Determining whether x ∈ S̄ given S
Determining whether a propositional formula Ap satisfiable, a tautology, or a
contradiction

Undecidable problems
The halting problem
Determining whether a first-order logic formula is satisfiable or valid
Tiling problem

We can use a TM to simulate tilings and the process of finding tilings to
simulate a TM

Computability: A function that can be computed by a TM is computable

Proving Undecidability

Undecidability is proven using reduction
If we want to prove problem P  undecidable, then we show that if Q is decidable, then P  is
decidable. Then, by contrapositive, if P  is not decidable, then Q is not decidable
This can be done that showing that P  and Q are equivalent problems in some way (similar
to bijection proofs) by creating an algorithm that turns an instance of the problem P  into an
instance of the problem Q

I.e. how solving problem Q can also solve problem P
This is called a reduction from P  to Q

The correct way to prove undecidability is to reduce the problem to an existing undecidable
one

Ex. The halting problem can be reduced to the blank tape halting problem, so we know
that the blank tape halting problem is undecidable
Ex. The state-entry problem can be reduced to the halting problem



State-entry problem: does TM T  enter state q on input w

In these examples, we assume we have a halting problem decider and use it to build a
whatever decider

Uncomputability
A function can be computed by a total Turing machine ⟺  the function is computable
Uncomputable function: the Busy Beaver function B(n)

Let B(n) be the maximum number of 1s that Turing machine with n states and
alphabet {1,B} may print on an initially blank tape
We know B(2) = 4, B(3) = 6, and B(4) = 13, but we don't know B(n) for n ≥ 5,
although we know B(5) ≥ 4098 and B(6) ≥ 1018267

Every decision problem can be represented as a function (i.e. the one that outputs for 1 for
"YES" and 0 otherwise)

Function is computable ⟺  problem is decidable

Complexity
Decidable problems can be ranked by "difficulty" to solve

We can measure this in terms of time and space

Computational complexity of an algorithm: number of operations used by an algorithm
as a function of input size
Computational complexity of an problem: number of operations used by the most
efficient algorithm that solves a problem

If the Church-Turing thesis is true, this can be defined explicitly by counting the
number of transitions in the turing machine computation
Ex. constant, linear, quadratic ⊂ polynomial, exponential, factorial, etc.

P  vs. NP

A decision problem is P  (a polynomial-time problem) if it can be solved by a deterministic
turing machine in polynomial time

Equivalent to statements solvable in polynomial time by a non-deterministic Turing
machine
This is because a non-deterministic machine would , ,,,,

The problem is classified as NP  if it can be solved by a non-deterministic TM in polynomial
time

This is equivalent to the set of decision problems where the problem instances with
answer "YES" have proofs verifiable in polynomial time by a deterministic Turing
machine



Reasoning: solving the problem non-deterministically would consist of
1. A non-deterministic "guess" at the solution
2. Verifying the guessed solution, which we know is possible in polynomial time

Trivially, we have P ⊆ NP

To prove a problem is NP , we must show that no polynomial time algorithm exists to solve
it
The satisfiability problem (whether a given propositional logic equation with n symbols is
satisfiable) was the first to be proven NP -complete since essentially 2n checks must be
performed

Verifying an equation is much easier

P = NP?

Can problems in NP  be solved by polynomial time algorithms?
It is generally believed that this is not the case, i.e. P ≠ NP

I.e. there are problems that are harder to solve than to verify

A problem is NP -complete if any other NP  problem can be reduced to it
So, finding any polynomial time solution for an NP  problem would show P = NP



Lecture 17 - Peano Arithmetic and Godel's
Incompleteness Theorem
Properties of Equality

Abbr. Theorem

≈ − If Σ ⊢ A(t1), t1 ≈ t2, then Σ ⊢ A′(t2) where some occurences of t1 are replaced by t2

≈ + ∅ ⊢ u ≈ u

These can be used to prove the reflexivity (x = x), symmetry (x = y ⟹ y = x), and
transitivity (x = y ∧ y = x ⟹ x = z) of equality

First-order theories
FOL can be used to describe specialized domains (theories) that contain a small number of
relations and functions
Each theory has domain axioms which are FOL statements we assume to be true
Theory: set of domain axioms together with a system of formal deduction (from which all
theorems in the theory can be proven)

Ex. Number theory, set theory, group theory, etc.

For a theory T  with axioms AT , we use Σ ⊢AT
C to denote Σ, AT ⊢ C

Requirements for domain axioms A

A should be decidable: there should exist a terminating algorithm that can determine
whether a given formula is a domain axiom
A should be consistent ⟺  satisfiable
A should be syntactically complete: For all F ∈ A, either F  or ¬F  must be provable

This is not the same as semantic completeness

Example: Euclidian Geometry

1. A straight line exists between any two points
2. A straight line can be extended infinitely
3. A circle can be drawn with any given point as a center with any given radius
4. All right angles are equal



5. Parallel postulate: For any given point not on a given line, there exists one line passing
through that point that is parallel to the given line

The parallel postulate is not provable from the first four axioms

Peano Arithmetic
Peano's axioms form the basis of the Peano Arithmetic version of number theory
Individual: 0
Functions: successor s(n), addition +, multiplication ×
Relation: Equality ≈ (already a part of FOL)
Axioms (denoted PA)

Number Category Axiom

PA1 Successor ∀x¬(s(x) = 0)

PA2 Successor ∀x∀y((s(x) = s(y)) ⟹ (x = y))

PA3 Addition ∀x(x + 0 = x)

PA4 Addition ∀x∀y(x + s(y) = s(x + y))

PA5 Multiplication ∀x(x × 0 = 0)

PA6 Multiplication ∀x∀y(x × s(y) = x × y + x)

PA7 Induction (A(0) ∧ ∀x(A(x) ⟹ A(s(x)))) ⟹ ∀xA(x)

Proofs in Peano Arithmetic

We use induction to prove statements about all n ∈ N

Proof example: ∀x(s(x) ≠ x)

Prove A(0) (given as PA1)
Prove ∀x(A(x) ⟹ A(s(x)))

Prove A(0) ∧ ∀x(A(x) ⟹ A(s(x))) from the first two using (∧+)

Obtain ∀xA(x) by PA7 and (⟹ −)

The big picture

We can use FOL and the Peano axioms to construct other relations and theorems
Ex. u ≥ v is ∃z(u + z = v)

Ex. Prime(u) is (a < u)¬(∃z∃y((u = y × z) ∧ (a < y) ∧ (a < z)))

Peano arithmetic can then be used to prove properties of the relations



Any number theory theorem can be obtained using the Peano axioms and the 17 rules of
formal deduction

Gödel's Incompleteness Theorem
In any consistent formal theory T  with a decidable set of axioms, that is capable of
expressing elementary arithmetic (ex. Peano Arithmetic), there exists a statement/formula
that can neither be proved nor disproved in the theory

Original proof: constructs a statement GT  that states GT  is unprovable in T

Example proof: reduction to the halting problem
Write a TM that takes two inputs: a program P  and an input I for P
It generates all strings s that use the Latin alphabet and math symbols in increasing
length order
It then checks whether s is a formal proof of the statement P  halts in input I or its
negation
Since either "P  halts on I" or "P  does not halt on I" can be proven, our program
terminates and gives a yes or no answer
This has just solved the halting problem
Since the halting problem is undecidable, our assumption was incorrect. Therefore,
there exist statements expressible in T  that can neither be proven or disproven using
the axioms T

This works with any theory T  that can express a Turing Machine (Peano arithmetic is such
a system)
Hidden assumption: T  must be consistent (otherwise we could prove both "P  halts on I"
and "P  does not halt on I")



Lecture 18 - Program Verification
In these notes, we will use angle brackets to denote Hoare triples (ex. ⟨P⟩C⟨Q⟩) because
obsidian doesn't support the latex package with the proper notation :(

Program Correctness: does a program satisfy its specification?
Techniques for verifying program correctness

Inspection: code walkthroughs
Testing: black box and white box

Disadvantage: does not assure that no bugs exist, just that they probably don't
Formal verification: proving a program correct using formal deductions

State the specification of a problem in FOL and prove that it acts as such using
formal deduction
Often used in safety-critical software (ex. traffic lights, etc.)

Steps of Formal Verification
1. Convert informal description of requirements R into a formula ΦR in some symbolic logic
2. Write a program P  that realizes ΦR in some programming environment
3. Prove that the program P  satisfies ΦR

We will mostly consider this step

Programming Paradigms
Imperative

Manipulating value of variables
State: consists of the vector containing the values of all the variables at a particular
time in the execution of the program
Expressions are evaluated relative to the current state of the program
Statements change the state of the program

Sequential: no concurrency
Transformational: given inputs, the output is computed and the program terminates

Core programming language

We will use a fake programming language, with C++ syntax and the following program
constructs: integer and boolean expressions, assignment, sequences, if-then-else, while
loops



This is a Turing equivalent programming language: it can simulate any Turing machine

Hoare triples
Have the following form:

⟨P⟩: Precondition
C: Code (program)
⟨Q⟩: postcondition

We can use the relations State(s), Condit(P), Code(C), Satisfies(s,P), Terminates(C, s)

and function result(C, s) to describe the pre and postconditions in FOL
Meaning of the triple ⟨P⟩C⟨Q⟩: if C is run in starting in a state that satisfies the logical
formula P , then the resulting state after the execution of C will satisfy Q
⟨P⟩C⟨Q⟩ is called a Hoare triple

P  and Q are written in the first order logic of integers
We can use Hoare triples to prove pieces of code

Formal specification

A specification of a program C is a Hoare triple where C is the second component
Often, we don't want to put any constraints on the initial state; the precondition can often
be set to "true"

Partial Correctness

A Hoare triple ⟨P⟩C⟨Q⟩ is satisfied under partial correctness (⊨par ⟨P⟩C⟨Q⟩) iff, for every
state s that satisfies condition P , if the execution of C starting with state s terminates with
state s′, then s′ satisfies condition Q

I.e. if the program terminates, the triple will be correct
Partial correctness is weak: a program that never terminates is always vacuously "partially
correct"

Ex. while(true) { x = 0; }  satisfies all specifications under partial correctness

Total Correctness

A Hoare triple ⟨P⟩C⟨Q⟩ is satisfied under total correctness (⊨tot ⟨P⟩C⟨Q⟩) iff, for every state
s that satisfies condition P , the execution of C starting from state s terminates and the
resulting state s′ satisfies Q
Total correctness = partial correctness + termination

// (x = 1)
y = x;



Expressing Correctness in FOL

Partial correctness of ⟨P⟩C⟨Q⟩: ∀s∀P∀C∀Q[State(s) ∧ Condit(P) ∧ Code(C) ∧ Condit(Q)

⟹  (Satisfies(s,P) ∧ Terminates(C, s) ⟹ Satisfies(result(C, s),Q))]

Total correctness of ⟨P⟩C⟨Q⟩: ∀s∀P∀C∀Q[State(s) ∧ Condit(P) ∧ Code(C) ∧ Condit(Q)

⟹  (Satisfies(s,P) ⟹ Terminates(C, s) ∧ Satisfies(result(C, s),Q))]

Proving Correctness
Goal: proving total correctness

Execution: prove partial correctness, then termination. Total correctness follows from
this

Proving partial correctness

We define inference rules (similar to formal deduction rules) that can be applied to any
state and condition
A partial correctness proof is an annotated program

Each program statement has a pre and post condition, which form a Hoare triple. Each
triple contains a justification (written to the side)

The conditions may require extra (logical) variables that do not appear in the
program

Usually, these overlap, so the postcondition of a statement is the precondition of the
next one
These are often assertions

Proofs are often started bottom-upwards; we usually start with the postcondition
Then, we need to provide FOL formal deductions for any implications that we used
(More concrete) proof steps

1. Annotate the program using inference rules
2. Moving backwards, add an assertion/condition before each assignment

// (y = 1)

// (x >= 0)
y = 1;
z = 0;
while (z != x) {

z = z + 1;
y = y * z;

}
// (y = x!)



3. Prove any implications that result using FOL

Inference Rules

We must think about what we would have to prove about the initial state to prove that Q
holds in the final state

Name Equation Notes

Assignment ⟨Q[E/x]⟩x = E; ⟨Q⟩
Q[E/x] means we replace x with E. Q
depends on x

Composition
If we have ⟨P⟩C1⟨Q⟩ and
⟨Q⟩C2⟨R⟩, then we have
⟨P⟩C1;C2⟨R⟩

We can merge two adjacent Hoare triples

If-then-else
If we have ⟨P ∧ B⟩C1⟨Q⟩ and
⟨P ∧ ¬B⟩C1⟨Q⟩, then we have
⟨P⟩ if (B),C1,  else C2⟨Q⟩

We can describe a similar version without
the else block

Partial
While

If we have ⟨I ∧ B⟩C⟨I⟩, then we
have ⟨I⟩ while (B)C⟨I ∧ ¬B⟩

I is the invariant, so it stays the same
before, during, and after termination. It
expresses some meaningful relationship
among the variables used in the loop. The
loop condition B must be false after
termination, since the loop finished

Note that only the while loop can be responsible for a non-terminating program in the
language we have constructed

Conditional Template



Partial While Template

Implications

Precondition Strengthening: If P ⟹ P ′ and we have ⟨P ′⟩C⟨Q⟩, then we also have
⟨P⟩C⟨Q⟩

This means we can create a stronger precondition if we wish, as long as it implies the
existing one (i.e. ∅ ⊢ P ⟹ P ′)
Ex. we could use ⟨y = 6⟩ as a precondition for y + 1 = 7, since y = 6 ⟹ y + 1 = 7

and ⟨y + 1 = 7⟩ is a valid precondition
Postcondition Weakening: If ⟨P⟩C⟨Q′⟩ and we have Q′ ⟹ Q, then we also have
⟨P⟩C⟨Q⟩



I.e. we can also weaken the postcondition in the same way

Total Correctness Problem

Is a given Hoare triple ⟨P⟩C⟨Q⟩ satisfied under total correctness
This is an undecidable problem; we can reduce it to the blank tape halting problem
The partial correctness problem is also undecidable


